
2008 BLUE MOP, FUNCTIONAL EQUATIONS-I
ALİ GÜREL

(1) Find all f : R→ R such that f(f(x)) = x2 − 2 for all real x.

(2) (SL-92) Let a, b > 0. Find all functions f : R+ → R+ which satisfy

f(f(x)) + af(x) = b(a+ b)x, for all x ∈ R+.

(3) (Vietnam-03) Let F be the set of all functions f : R+ → R+ which satisfy
the inequality f(3x) ≥ f(f(2x)) + x for all positive x. Find the largest
positive number α such that for all functions f ∈ F , we have f(x) ≥ αx.

(4) Find all functions f : N→ N that satisfy

f(f(n)) + f(n+ 1) = n+ 2.

(5) (Belarus-97) Find all functions g : R→ R such that for all x, y ∈ R
g(x+ y) + g(x)g(y) = g(xy) + g(x) + g(y)

(6) (BMO-97) Solve the functional equation

f(xf(x) + f(y)) = y + f(x)2, ∀x, y ∈ R.

(7) (SL-03) Find all functions f : R+ → R+ satisfying the following conditions:

(i) f(xyz) + f(x) + f(y) + f(z) = f(
√
xy)f(

√
yz)f(

√
zx)

(ii) f(x) < f(y) for all 1 ≤ x < y

(8) Given a positive integer n, let f : R → R be a continuous function satis-
fying f(0) = 0, f(1) = 1, and f (n)(x) = x for every x ∈ [0, 1]. Prove that
f(x) = x for all x ∈ [0, 1].
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Problem 1, Solution by Brian Hamrick: Let f (k) be f applied k times.
f (4)(x) = x is quartic equation with four real roots:

a = −1, b = 2, m =
−1 +

√
5

2
, and n =

−1−
√

5
2

·

So a, b,m, n are the fixed points of f (4). Moreover a, b are also the fixed
points of f (2). Now observe that if x is a fixed point of f (k), then so is
f(x). Observe that f(m) and f(n) are m or n because they are fixed points
of f (4) but not f (2). On the other hand, f is injective on the set of these
four points {a, b,m, n} since neither one is the negative of another. Now,
in both cases we have f(f(m)) = m which is a contradiction since the only
fixed points of f (2) are a and b �

Problem 2, Solution by Wenyu Cao: Let x0 = x, for a fixed x and let
xn+1 = f(xn) for n ≥ 0. The given condition becomes:

xn+2 + axn+1 = b(a+ b)xn
which has the characteristic equation y2 + ay − b(a + b) = 0 with roots
y = b, and y = −a− b. Thus xn = sbn + t(−a− b)n for some real constants
s and t. If t 6= 0, then for sufficiently large n, the t(−a − b)n term will
dominate the sbn term and xn will become negative, which contradicts the
definition of f . Thus, t = 0 and it follows that f(x) = bx �

Problem 3, Solution by Toan Phan: Firstly, observe that f(x) = x
2

satisfies the condition f(3x) ≥ f(f(2x)) + x. Thus, α ≤ 1
2 . Secondly,

f(x) > x
3 . Moreover if f(x) ≥ αx, then using the functional equation we

get f(x) ≥ 2α2+1
3 x, as well. Let a1 = 1

3 and an+1 = 2a2
n+1
3 . Then α = an

satisfy the inequality for all n. Observe that the sequence {an} is increasing
and bounded by 1

2 , thus it has a limit and we find that limn→∞ an = 1
2 .

Hence the answer is α = 1
2 �

Problem 4, Solution by John Berman: Plugging-in values n = 1 and
n = 2, after eliminating some possibilities we conclude that f(f(1)) = 1
and f(2) = 2. Then by induction we show that for n ≥ 2, 2 ≤ f(n) ≤ n.
So the recursion, f(n + 1) = n + 2 − f(f(n)) determines all f(n) values
for n ≥ 2 uniquely. Then f(f(1)) = 1 implies that f(1) cannot be larger
than 1, hence f(1) = 1. Let φ =

√
5−1
2 . We claim that f(n) = [φn] + 1. To

prove this, we need to show that it satisfies the same recurrence relation as
f . Note that φn < f(n) < φn+ 1. Furthermore, φk + 1− φ < f(k) is true
for at least one of k = n or k = n+ 1 and f(k) < φk + 1− φ is true for at
least one of k = n or k = n+ 1. Thus,

φ2n+ φ(n+ 1) + 1− φ < f(n) < (φ(φn+ 1) + 1) + (φ(n+ 1) + 1)− φ.
Bounding by integers, n + 1 < f(f(n)) + f(n + 1) < n + 2 + φ implies
f(f(n)) + f(n+ 1) = n+ 2, as desired �
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Problem 5, Solution by Justin Brereton: Observe that g(0) = 0 or 2.
If g(0) = 2 the only solution is g ≡ 2. If g(0) = 0, letting x = y = 2 gives
g(2) = 0 or 2. Assume that g(2) = 2. Then we get g(1) = 1 or 2 by letting
x = y = 1. Assume g(1) = 1, then note that g(x+ 1) = g(x) + 1. for all x.
In this case, we get g(x + n) = g(x) + n and g(nx) = ng(x) for all x and
integer n. Letting x = y

y−1 , we get g( 1
z ) = 1

g(z) for all non-zero z. Then
since g(n) = n for all integers, we get g

(
1
n

)
= 1

n and then it follows that
g(r) = r for all rational numbers r. Now, since g(x2) = g(x)2 ≥ 0. Com-
bining this with the g fixing rational numbers, we can show that g(x) = x
for all real number x. In all the case g(1) = g(2) = 2, we get g ≡ 2 by
letting y = 1 which contradicts the fact that g(0) = 0. The only case left is
g(2) = 0. In this case, first show that all rational numbers are sent to zero.
Then by letting y = n a positive integer show that g(x+n) = g(nx)+g(x).
In particular, g(x+ 1) = 2g(x), hence by induction g(x+ n) = 2ng(x). So
g(nx) = (2n − 1)g(x). But then, on one hand g(4x) = (24 − 1)g(x), on the
other hand g(4x) = (22− 1)g(2x) = (22− 1)(22− 1)g(x). We conclude that
g ≡ 0 in this case as well. In conclusion the only solutions are g(x) = x
and the two constant functions g ≡ 0 and g ≡ 2 �

Problem 6, Solution by Sergei Bernstein: Plugging-in x = 0 gives
f(f(y)) = y. Plugging-in y = 0 gives f(xf(x)) = f(x)2. Replacing x with
f(x) we get f(x) = ±x. Suppose that x, y 6= 0 and f(x) = x but f(y) = −y.
Then plugging-in (x, y) gives f(x2 − y) = x2 + y implies x = 0 or y = 0,
a contradiction. We conclude that f(x) = x and f(x) = −x are the only
solutions �

Problem 7, Solution by Sam Keller: Letting x = y = z = 1, we get
f(1) = 2. Then (x, y, z) = (a2, 1, 1) gives f(a)2 = f(a)2 + 2. The triple
(x, x, 1

x ) then gives f(x) = f( 1
x ). Letting z = 1

y and s =
√
xy, t =

√
x
y

gives f(st) + f( st ) = f(s)f(t). f is increasing for x = 1, f( 1
x ) = f(x) and

f(1) = 2. We conclude that f(x) ≥ 2 for all x > 0. Let f(x) = g(x) + 1
g(x) .

Inducting on n and using the above equation with s = xn and t = x we
show that g(xn) = g(x)n. It then follows that g(xr) = g(x)r for all rational
numbers r. Since g is increasing, the same result follows for all real numbers
r and hence by letting h(x) = ln(g(ex)) and using Cauchy’s Equation, we
deduce that g(x) = xc for some constant c. In conclusion f(x) = xc + 1

xc

for some constant c and all such functions actually work �

Problem 8, Solution by Sergei Bernstein: Observe that f is injective.
Since it is also continuous and f(0) < f(1), it has to be strictly increasing,
otherwise using Intermediate Theorem we would get to different numbers
whose images are same. Now if x ≤ f(x) applying f to both sides repeatedly
and using monotonicity, we get

x ≤ f(x) ≤ f (2)(x) ≤ ... ≤ f (n)(x) = x.

Hence f(x) = x. We get the same result in the other case: x ≥ f(x) and
conclude that f(x) = x for all x ∈ [0, 1] �


